یادگیری و پیشرفت
:::::::::::::::: ::::::::::::::::
دیجیتال مارکتینگ
:::::::::::::::: ::::::::::::::::
رشد کسب‌وکار
:::::::::::::::: ::::::::::::::::
صنعت آموزش


عضو شوید


نام کاربری
رمز عبور

:: فراموشی رمز عبور؟

عضویت سریع

نام کاربری
رمز عبور
تکرار رمز
ایمیل
کد تصویری
براي اطلاع از آپيدت شدن وبلاگ در خبرنامه وبلاگ عضو شويد تا جديدترين مطالب به ايميل شما ارسال شود



تاریخ : یک شنبه 15 ارديبهشت 1398
بازدید : 436
نویسنده : کیا فایل

Solution techniques for elementary partial differential equations

Solution techniques for elementary partial differential equations

 

Title: Solution techniques for elementary partial differential equations | Author(s): Constanda C. Publisher: CRC Press Year: 2010 Edition: 2Language: English Pages : 340 ISBN: 9781439811405 Size: 2 MB  |Extension: pdf

 

 

Features

  • Gives students the necessary theoretical foundation and practical experience for solving analytical problems
  • Presents a variety of solution methods, including the separation of variables, eigenfunction expansion, Fourier and Laplace transformations, Green’s functions, and asymptotic techniques
  • Includes Mathematica® code that enables students to check the accuracy of their work without interfering with the solution procedure
  • Contains a wealth of worked examples and exercises—both computational exercises and standard problems not requiring a software package

A solutions manual and PDF projector files are available upon qualifying course adoption.

Summary

Solution Techniques for Elementary Partial Differential Equations, Third Editionremains a top choice for a standard, undergraduate-level course on partial differential equations (PDEs). Making the text even more user-friendly, this third edition covers important and widely used methods for solving PDEs.

New to the Third Edition

  • New sections on the series expansion of more general functions, other problems of general second-order linear equations, vibrating string with other types of boundary conditions, and equilibrium temperature in an infinite strip
  • Reorganized sections that make it easier for students and professors to navigate the contents
  • Rearranged exercises that are now at the end of each section/subsection instead of at the end of the chapter
  • New and improved exercises and worked examples
  • A brief Mathematica® program for nearly all of the worked examples, showing students how to verify results by computer

 

This bestselling, highly praised textbook uses a streamlined, direct approach to develop students’ competence in solving PDEs. It offers concise, easily understood explanations and worked examples that allow students to see the techniques in action.

 

 

Table of Contents

Ordinary Differential Equations: Brief Revision
First-Order Equations

Homogeneous Linear Equations with Constant Coefficients
Nonhomogeneous Linear Equations with Constant Coefficients
Cauchy–Euler Equations
Functions and Operators

 

Fourier Series
The Full Fourier Series

Fourier Sine and Cosine Series
Convergence and Differentiation
Series Expansion of More General Functions

 

Sturm–Liouville Problems
Regular Sturm–Liouville Problems

Other Problems
Bessel Functions
Legendre Polynomials
Spherical Harmonics

 

Some Fundamental Equations of Mathematical Physics
The Heat Equation

The Laplace Equation
The Wave Equation
Other Equations

 

The Method of Separation of Variables
The Heat Equation

The Wave Equation
The Laplace Equation
Other Equations
Equations with More Than Two Variables

 

Linear Nonhomogeneous Problems
Equilibrium Solutions

Nonhomogeneous Problems

 

The Method of Eigenfunction Expansion
The Nonhomogeneous Heat Equation

The Nonhomogeneous Wave Equation
The Nonhomogeneous Laplace Equation
Other Nonhomogeneous Equations

 

The Fourier Transformations
The Full Fourier Transformation

The Fourier Sine and Cosine Transformations
Other Applications

 

The Laplace Transformation
Definition and Properties

Applications

 

The Method of Green’s Functions
The Heat Equation
The Laplace Equation
The Wave Equation

 

General Second-Order Linear Equations
The Canonical Form

Hyperbolic Equations
Parabolic Equations
Elliptic Equations
Other Problems

 

The Method of Characteristics
First-Order Linear Equations

First-Order Quasilinear Equations
The One-Dimensional Wave Equation
Other Hyperbolic Equations

 

Perturbation and Asymptotic Methods
Asymptotic Series

Regular Perturbation Problems
Singular Perturbation Problems

 

Complex Variable Methods
Elliptic Equations
Systems of Equations

 

Appendix

Further Reading

Index

 

 

 



 



:: موضوعات مرتبط: ریاضی , ,
:: برچسب‌ها: فایل , differential equations , Solution Manual , 2010 , CRC Press , Mathematics ,
تاریخ : سه شنبه 7 اسفند 1397
بازدید : 612
نویسنده : کیا فایل

Differential Equations: A Problem Solving Approach Based on MATLAB

Differential Equations: A Problem Solving Approach Based on MATLAB

 

Title: Differential Equations: A Problem Solving Approach Based on MATLAB | Author(s): P. Mohana Shankar | Publisher: CRC Press | Year: 2018 | Edition: 1 | Language: English |Pages : 458 | ISBN: 9781138501607, 1138501603, 9781315144429, 1315144425, 9781351385749, 1351385747 | Size: 23 MB | Extension: pdf

 

 

 

 

 



:: موضوعات مرتبط: ریاضی , ,
:: برچسب‌ها: matlab , differential equations , ,

صفحه قبل 1 2 3 4 5 ... 216 صفحه بعد

فروشگاه فایل کیا؛ منبع جامع انواع فایل... چنانچه فایل مد نظرشما در بین فایل های بارگذاری شده در سایت موجود نبود،می توانید از طریق دایرکت پیج اینستاگرام@kiyafile.ir سفارش دهید.

نام :
وب :
پیام :
2+2=:
(Refresh)

تبادل لینک هوشمند

برای تبادل لینک ابتدا ما را با عنوان منبع جامع انواع فایل و آدرس kiyafile.ir لینک نمایید سپس مشخصات لینک خود را در زیر نوشته . در صورت وجود لینک ما در سایت شما لینکتان به طور خودکار در سایت ما قرار میگیرد.











RSS

Powered By
loxblog.Com
مدیر سبز، آموزش بازاریابی

TOOLS BLOG

TOOLS BLOG